SOME PROBLEMS OF THE FLOW OF A VISCOELASTIC
MEDIUM IN TUBES OF CONSTANT SECTION

A. S, Morozov, E. K, Borisenkova, UDC 532.135:532.525
and G. V., Vinogradov

The change of the pressure drop along the channel of a tube during flow of a viscoelastic med-
ium is investigated.

The article is devoted to a determination of the regularities of the pressure drop along a channel of
a tube during flow of a viscoelastic medium. The objects of investigation were two specimens of polyiso-
butylene grade P-20, differing in viscosity which corresponded to the shear stress T extrapolated to zero,
For the first specimen n_ _,  =4.1-10° and for the second n; _, 2.4 - 10® Nsec/m? at 25°C. The specific
weight of the specimens was 910 kg/m?,

The pressure at the wall was measured by the strain gauge method similar to that done earlier by a
number of investigators [1-3].

In conducting the experiments we use a high-pressure capillary viscosimeter [4] with a set of round
and rectangular capillaries, In treating the experimental data the calculation results were obtained in the
form of the values of stresses 7and shear velocities ¥ reduced to the conditions of deformation at the tube
walls. For this purpose we used the conventional methods of treating experimental data [5] obtained during
flow in tubes of constant section, The device for determining the distribution of stresses in a rectangular
tube is shown schematically in Fig, 1. If represents a constant-pressure capillary viscosimeter. The
pressure drop in the tube is created from a nitrogen cylinder 1. The pressure regulator 2 maintains a con-
stant pressure in bomb 4. The pressure in the bomb is monitored by standard manometers 3 connected
into a common control panel. The pressure of the test medium 8 filling the cylinder (bomb) 4 is transmitted
through piston 5. The inside diameter of the bomb is 0.035 m and the length is 0.4 m. The piston was
absent when conducting a series of experiments.

The test medium flowed through a plane rectangular channel of a tube 6. The height of the tube chan-
nel was H = 0.0055, width W =0,0218, and length L. = 0.149 m, The tube was made of polymethyl metha-
crylate plates, 0.007 m thick, Five grooves with a diameter of 0.018 m were milled on one of the plates
(as indicated in Fig. 1) so that the wall thickness of the channel directly in the grooves was reduced along
the channel from the entrance to the exit from 0.001 to 0,0003 m, respectively. Wire strain gauges 7 were
cemented in the grooves on the wall parallel to the channel of the tube. The distance of the center of the
first gauge from the tube entrance section was 0,025 m and the distance between all subsequent centers of
the gauges was 0,026 m, The base of the wire strain gauges was 0.005 X 0,004 m.

The gauges were connected to a balancing bridge circuit supplied by a stabilized direct current. The
change of the resistance of the gauges during deflection of the tube walls under the effect of the pressure of
the test medium were recorded on an EPP-09 recording potentiometer. The gauges were calibrated under
static conditions. In so doing the channel exit was closed, the bomb and tube were filled with vaseline oil,
and constant pressures, monitored by manometers 3, were set, The curves of the change of the gauge
readings as a function of the pressure delivered to the bomb during filling of the bomb and tube with poly-
isobutylene with a closed exit of the tube coincided with the calibration curves.

The volume flow rate Q was\calculated on the basis of determining the weight of the test medium
flowing from the tube in fixed time intervals,
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Fig. 1. Diagram of the device for measuring the change of pressure over
the length of the rectangular tube.
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Fig. 2. Pressures Py and Py at points corresponding to positions 9 and 10
in Fig. 1 as a function of the pressure Py, of the gas in the viscosimeter
bomb at shear stresses 7 = 0.81-10% and 7= 1.06 - 10 N/m? in the second
specimen of polyisobutylene,

The shear velocity at the wall was determined by the equation [5]

Y = v;gz [sec'lj (1)
and the shear stress
c=08l.100 L L /my, (2)
2 dl

where dp/dl is the pressure gradient for a steady flow regime of the test medium in the tube,

The change of pressure immediately next to the entrance section of the tube channel was determined
in the following way. The plane tube channel and viscosimeter bomb (Fig. 1) were filled with specimen 8
to a height of 0.011 m before the channel entrance (piston 5 was absent). At the entrance to the tube chan-
nel the pressures were measured on the end face (9) and at a distance of 0,0002 m from the plane of the
tube end (10). TFigure 2 presents the results of measuring the pressures at the entrance of the tube channel
corresponding to positions 9 and 10. The straight line running at an angle of 45° to the coordinate axes cor-
responds to equality of the pressure P, created in the viscosimeter bomb and measured at points denoted
in Fig. 1 by positions 9 and 10. In Fig. 2 the corresponding pressures at points 9 and 10 are denoted as
Pr1 and Ppy and are plotted as closed and open circles. The experiments were carried out at shear stresses
7=0.81-10%and 7 = 1.06-10* N/m?. Under the indicated conditions elastic deformations in the test speci-
men did not develop owing to the absence of a difference of Py and Py within the measurement limits.

It is clear from the aforesaid that if elastic deformation did not develop in the second specimen up
to the entrance section of the tube channel at 1,06 -10* N/m? and height of filling the test material in the
bomb h =0.01 m, then for 7 and Hy less than the indicated values the elastic deformations and normal
stresses in the entrance section of the tube channel will be equal to zero.

We will estimate the measurement errors made during this study.

The experimental data were treated on the basis of the calibration curves. In graphing the calibration
curves, as when conducting the experiment, we measured the pressure and weight of the material flowing
from the tube in definite time intervals.

The pressure was set according to a class 0.5 standard manometer and registered by strain gauges
with recording on the EPP-09. The manometer readings were taken with a greater accuracy than their
recording on the EPP-09. We recorded the values of the pressure (P —P,,) orthogonal to the shear planes
with 2 maximum absolute error of = 0.5 of the scale division of the EPP~09 recording potentiometer, which
corresponds to reading errors fo the gauge A(P—P,,) placed near the entrance section of the tube channel
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Fig. 3. Distribution of pressure (P—P,,) at wall along the tube
channel, Curves 1-6 for shear rates at the wall of 0.0073,
0.0115, 0.091, 0.02, 0,0374, and 0.0469 sec~!, respectively.
Curves 2 and 3 were obtained in the absence of a piston in the
visosimeter bomb and height of filling the specimen Hy < 0.01 m,

Fig. 4. Diagram of the comparison of the values of P, P,,, and
(P—Pyy). L is the length of the tube channel.

of +0.06 atm ~ 6-10 N/m? and near the exit section of + 0,03 atm ~ 3-10* N/m?, The absolute errors of
the pressure measurements at other points of the tube channel are between the indicated values, decreasing
about in proportion to the distance from the entrance of the tube channel. In Fig. 3 the region of absolute
errors of measuring (P-P,,) is hatched and within it lie the true values of (P—P,;. The absolute error or
measuring (P-P,;) can be expressed in segments of the length of the tube channel Al on which a pressure
drop equal fo A(P~P,,), i.e., Al = A(P—P,,)/d(P—-Py)/di, occurs. The accuracy of measuring (P'—Pzz)
was determined only by the accuracy of the recording on the potentiometer, since the only variable para-
meter necessary for calculating (P—P,,), viz., the pressure in the viscosimeter bomb, was set with a much
greater accuracy.

The relative errors, according to Fig. 3, at small pressures (P—P,,) reach appreciable values (about
+ 25%), but at large pressures (P—P,,) amount to only about + 1.5%.

Experimental Results. The distribution of the pressures of the test medium on the tube walls over
the length of the plane channel during flow of polyisobutylene with different shear velocities through it is
given in Fig. 3. The data for the first specimen are presented in Fig. 3. The pressure drop in the bomb
as a consequence of the friction of the piston on its wall and flow of the test medium in the bomb, and also
at the start of the tube up to the first gauge, can reach 67% of the pressure set in the bomb. In this case
the indicated pressure losses decrease with an increase of the strain rate, which can be traced from the
data in Table 1 (third column), where the measurement results only for the first specimen of polyisobuty-
lene are given,

Under conditions in which the change of pressures was determined in the entrance section, i.e., with
filling of the viscosimeter bomb to a height of 0.01 m, we determine the distribution of pressures in the
tube channel during flow of the first specimen of polyisobutylene at shear rates of 0.0115 and 0.019 sec™
(Fig. 3, curves 3 and 3). Curve 2 coincides fully with the curve obtained for the same shear rate but with
filling of the viscosimeter bomb to a height of 0.11 m in the presence of a piston, although in the latter
case the pressure losses outside the tube channel reach appreciable values m ~ 60% (Table 1, experiment
Nos. 2 and 3), whereas in the first case they are practically equal to zero, This indicates that not only
with filling to a height of 0.011 m but also to 0.11 m the elastic deformations in the entrance section of the
tube channel are equal to zero, as also Py =P,y = 0.

i

The most marked change of pressure (P--Py,) occurredatthe entrance of the tube channel, where the
normal stresses P;; and P,, were equal to zero. Under these conditions the structure of the material for
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TABLE 1., Parameters Determining the Flow of a Specimen of P-20
Polyisobutylene in a Rectangular Tube Channel

Measurements of pressure g, e E
[ ) Q| @ 2
= (P - Py), atm, at points located|2 8E{ 2 L &
= P = QOol® = >
o 0 . <=, ifrom the entrance, m v2dfls -
Ne [ P, -1 a1 =5 2B
S ob| gem | V€ 2cols = 59
g M atm | 0,0025 | 0,0051 | 0,0077 | 0,0103 | 0,0120 | $~ o} © '.:’\E
A= A Eiv 2 &=
1 1 2,53 | 0,0073 |0,087 {0,83 | 0,62 | 0,52 0,3 | 0,08 67 0,187
2 2 3,44 | 0,0115 0,142 |1,4 1,11 | 0,8} 0,56 | 0,18 60 0,306
3 2 1,97 | 0,0115 (0,142 |1,45 | 1,11 [ 0,83} 0,55 | 0,16 0 0,306
4 3 3,14 | 0,019 {0,214 2,34 | 1,79 1,33 0,86 | 0,28 0 0,46
5 4 4,97 1 0,02 0,228 12,6 1,96 | 1,46 | 0,92.| 0,33 | 49,6 | 0,49
6 5 7,06 0,0374 |0,352 1 — |3,22/2,26|1,45]|0,66 | — 0,756
7 6 8,37 | 0,0469 |0,4171 — — 12,731,77]0,68| — 0,895

all practical purposes still did not experience damage. The viscosity n: _,  was determined by the follow-
ing equations, which are a particular case of the notation of the notation of the equation [5] of motion of our
problem for the entrance section of the tube channel:

dp d(P—P,y) dv
L 4P Py, ST
i ( 1w/ 7 7

since Py; = Py, = 0 when 1 —~0, i.e., for the entrance section, we can find the shear stress at the wall
TS =0 and the apparent viscosity corresponding to this stress Ny —0 =Ty — o/ Ve

For the first specimen of polyisobutylene the pressure gradients at the channel entrance for shear
rates 0.0115 and 0.019 sec™! (Fig. 3, curves 2 and 3) are respectively 2.15-10* and 3.57-10* N/m?, The
viscosity 7, _. ;, according to these data is equal to 4.1- 10° Nsec/m? in both cases. The viscosity deter-
mined for this same specimen on extrapolating the shear stress to zero is equal to 4.3 10° Nsec/m? (extra-
polation according to the data in Table 1).

For the second specimen of polyisobutylene the viscosity Ny =0 determined according to the pressure
drop d(P—P,,)/dl in the entrance section of the tube channel is equal to 2.5- 108 Nsec/m? the determination

of n, _.oon extrapolation to a zero value of the shear stress gives a value of 7, _, ; equal to 2.25- 108 Nsec
/m?,

From the comparison indicated above we see that under appropriate conditions the method of calcula-
ting the viscosity 7, _. , on the basis of the pressure gradient d(P—P,,)/d! at the channel entrance can be
used practically for determining the maximum viscosity corresponding to its value when v — 0.

In the region of the tube channel where we can assume that the pressure gradient remains constant,
the increment of the elastic energy is equal to zero and the normal stresses remain unchanged: dP,,/d:
= dPy,/dl = 0, whence follows d(P—Py,)/dl = d(P—P,,)/dl = dP/dl. This enables us to calculate in this
region on the basis of the experimentally determined values of d(P—P,,)/dl the shear stresses by means
of the usual equations [5] for a steady flow regime of the test material,

The following scheme of comparing the data obtained on rotary and capillary instruments is of in-
terest: the normal stresses during shear with an increase of strain, just as the shear stresses, reach
a maximum and then decrease, as is shown schematically in the graph for P,, (Fig. 4). The presence of
this variation of normal stresses, for example, for the first and second specimens of polyisobutylene at
shear rates corresponding to those used in determining the relations presented in Fig. 3, follows from the
fact that at the same shear rates, for example, for the first specimen, the elastic deformations as a func-
tion of total deformation correspond to the graph for P,, (Fig. 4). The elastic deformations were deter-
mined by direct measurements on a rotary instrument [7]. If we assume that the most probable case of .
linearity of the hydrostatic pressure over the length of the tube channel is realized (the graph for P,,, Fig.
4), then the function (P—P,,) = f(1) corresponds to the graph given for this function in Fig. 4, which cor-
responds fully to the experimental curves presented in Fig. 3.

In the case of determining not only (P—P,,) = f(1) but also (P-P,,) =(1) the method of capillary

viscosimetry probably permits taking a large part of the measurements which are taken with the use of
rotary instruments.
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NOTATION

P, is the pressure in the viscosimeter bomb;

Py and Py are the pressure in the end plane at the channel entrance and in a direction ortho-
gonal to the shear plane at a distance of 0.002 m from the entrance section of the
tube channel;

Pyy and Py, are the normal stresses directed along the tube channel and orthogonal to the shear
) plane;
P is the hydrostatic pressure;
(P—Pyy) is the pressure in a direction orthogonal to the shear plane;
A(P-Py,) are the errors of measuring pressure (P—Py,);
H, W, L, are the height, width, and length of tube channel;
H, is the height of column of test material in viscosimeter bomb;
h,i are the directions orthogonal to the shear plane and along tube channel;
Q is the volume flow rate;
Y is the shear rate;
Nr—gandny g are the viscosities corresponding to shear stress and deformation extrapolated to
zero values;
T is the shear stress.
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